Skip to main content

Threat Modeling

Humans have and will always be using techniques we now call Threat Modeling. The circumstances we are in and history is full of threat modeling techniques employed at and effectively used to counter an  adversary. The adversary has multitude of forms and attacks utilizes any vector for effectively neutralizing your efforts to counter the adversary.

So what do we do when we say threat modeling. Is threat an adversary? There are tomes written on the approach towards an adversary. Here in this blog, I will term "Threat Modeling" as something akin to understanding the adversary in terms of the threat he brings to the table and the varied tools (Armaments) in his disposal, his ability to understand your weaknesses and exploit it. All this put together helps the incumbent to understand the posture he has taken viz the adversary and therefore understands the various actions and reactions thereof.

The activity to list all the threats, countermeasures, weaknesses and appropriate actions and reactions of the adversary and the subsequent changes in the action as a consequence of a countermeasure are all studied and we get ready to take on the adversary. This activity of self realization can be simplified and call it "Threat Modeling"

Comments

Popular posts from this blog

HIPAA - What is that we need to know .... Cyberawareness for a Health Care Organization

  Here is a detailed cyber awareness training for HIPAA candidates: Introduction to HIPAA: Provide an overview of the Health Insurance Portability and Accountability Act (HIPAA) and the importance of protecting patient information. Understanding HIPAA regulations: Explain the different regulations under HIPAA, such as the Privacy Rule, Security Rule, and Breach Notification Rule. Identifying and reporting breaches: Teach employees how to identify a potential breach of patient information and the proper procedures for reporting it. Phishing and social engineering: Provide training on how to identify and avoid phishing emails and other social engineering tactics. Passwords and authentication: Teach employees about the importance of strong passwords and multi-factor authentication. Mobile device security: Discuss the risks of using mobile devices to access patient information and the measures employees can take to keep the information secure. Remote access security: Explain the risks ...

AI/ML Open Source Framework for adoption at an organization

  Data Storage : The first step in any ML pipeline is to store the data that will be used for training and testing. AWS offers various data storage options like Amazon S3, Amazon EFS, and Amazon EBS. Choose the one that best suits your requirements. Data Preprocessing : Data preprocessing is an important step in any ML pipeline. This step includes cleaning, normalizing, and transforming the data to make it suitable for training ML models. You can use open-source libraries like Pandas, NumPy, and Scikit-Learn for data preprocessing. Model Training : The next step is to train your ML models. You can use open-source ML frameworks like TensorFlow, PyTorch, or Apache MXNet for this step. AWS also offers its own ML framework called Amazon SageMaker, which provides a managed platform for training and deploying ML models. Model Evaluation : Once the models are trained, they need to be evaluated to ensure that they are accurate and reliable. You can use open-source libraries like scikit-lea...

The Shifting Landscape of Knowledge and the Nobel Prize

Our recent conversation sparked some interesting thoughts about the prestigious Nobel Prize and the distribution of its recipients across the globe. Inspired by a user's search history, we delved into the fascinating patterns and potential implications of who gets recognized for groundbreaking achievements. The initial point of discussion centered on the user's search activity, which revealed an interest in various scientific and technological topics, as well as a specific search for "Nobel Prize winners by country." This led us to explore the geographical distribution of Nobel laureates, and a question arose: why does it seem that certain schools and countries, particularly in the West, have a higher representation? We considered several factors that might contribute to this observation: Historical Dominance in Science: Historically, Western nations have often been at the forefront of scientific research due to earlier investments and established infrastructure. V...